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Abstract—GridFTP is the de facto standard in projects 
requiring secure, robust, high-speed bulk data transport. 
For example, the high energy physics community is basing 
its entire tiered data movement infrastructure for the 
Large Hadron Collider computing Grid on GridFTP; the 
Laser Interferometer Gravitational Wave Observatory 
routinely uses GridFTP to move 1 TB a day during 
production runs; and GridFTP is the recommended data 
transfer mechanism to maximize data transfer rates on the 
TeraGrid. GridFTP is well known for efficiently 
transferring data from one destination to another. In this 
paper, we present a new feature for GridFTP – 
multilinking – and show how it can be used to transfer a 
single file to many destinations efficiently. 

I. INTRODUCTION 
Large-scale collaborative science applications 
necessitate efficient and secure transport of data across 
geographically dispersed locations. The GridFTP [1] 
extensions to the File Transfer Protocol [2] define a 
general-purpose mechanism for secure, reliable, high-
performance data movement. The Globus 
implementation of GridFTP [3] provides a modular and 
extensible data transfer system architecture suitable for 
wide-area and high-performance environments.  Key 
features of GridFTP include the following: 
1. Performance: Typical GridFTP provides order of 
magnitude performance improvements compared to 
standard FTP. GridFTP achieves good performance by 
using non-TCP protocols such as UDT [4] and parallel 
streams to minimize bottlenecks inherent in TCP/IP.  
2.  Cluster-to-cluster data movement: GridFTP can do 
coordinated data transfer by using multiple computer 
nodes at the source and destination. This approach can 
increase performance by another order of magnitude. 
3. Reliability: GridFTP provides support for reliable and 
restartable data transfers.  
4. Multiple security options: The Globus GridFTP 
framework supports various security options, including 
Grid Security Infrastructure (GSI) [5], anonymous 
access, username- and password-based security such as 
regular FTP servers, SSH-based [6] security, and 
Kerberos [7].  

5. Modularity: The XIO-based [8] Globus GridFTP 
framework makes it easy to plug in other transport 
protocols. The Data Storage Interface (DSI) [9] allows 
for easier integration with various storage systems. 
6. Third-party control: GridFTP also allows secure third-
party clients to initiate transfers between remote sites. 
7. Partial file transfer: Scientists often find it expedient 
to download only portions of a large file, instead of the 
entire file. GridFTP supports this capability by 
specifying the byte position in the file to begin the 
transfer. 
8. Negotiation of TCP buffer/window sizes: GridFTP 
employs FTP command and data channel extensions to 
support both automatic and manual negotiation of TCP 
to get optimal performance. 

 
In this paper, we take advantage of the modularity 
provided by GridFTP to achieve the following:  

- Efficient transfers of a single dataset to many 
endpoints. 

- An architecturally sound method for forming 
GridFTP overlay networks. 

- An architecture for routing datasets from 
external networks to internal non-routable IP 
addresses 

 
In addition, we describe: 

- An experimental study to illustrate the benefits 
of this new functionality. 

- The protocol enhancements and the usage 
options. 

 
The rest of the paper is organized as follows. In Section 
2, we present related work.  In Section 3, we describe the 
architecture in detail. In Section 4, we present the 
experimental study. In Section 5, we highlight the 
enhancements to the GridFTP protocol and show how 
the new functionality can be utilized by using the 
commonly used GridFTP client “globus-url-copy.” In 
Section 6, we present a brief summary. 

II. RELATED WORK  
Work most closely related to ours is that presented by 



Rizk et al. [10]. Our network overlay architecture 
contribution is largely incremental.  In our work we use 
the Globus XIO interface to add the needed 
functionality; in their work Rizk et al. used the DSI 
(Data Storage Interface) [9]. From a software 
engineering perspective XIO is a more modular, safer, 
and reusable way to achieve packet forwarding. From a 
performance and functional viewpoint, however, we 
expect the results to be similar to those presented in [10].  
The most significant difference between our work and 
theirs is that we present two additional important 
advances: dataset broadcasting and internal routing to 
non-routable IP addresses.  These two advances add 
significant power to GridFTP data transfers. 

 
An extensive amount of work has been done in 

network multicast and data broadcast [11-16]. With 
regard to the broadcasting of datasets, we do not claim to 
achieve a new functionality; rather, we present a new 
way to achieve deployment of such functionality.  We 
offer all of the known advantages of GridFTP, including 
speed, security, and availability, and we couple those 
advantages with the dataset broadcasts to many 
endpoints.  Unlike other work in this area, we do not 
require new protocols or new software stacks. We have 
leveraged the extensibility of an existing and commonly 
deployed service to provide an important need to 
scientific communities. 

III. ARCHITECTURE 
The purpose of this work is to efficiently route a single 
dataset to many locations. Our goal is to use all available 
network cycles effectively, moving the total amount of 
data (number of destinations * file size) at network 
speeds. Ideally we would like to transfer to all 
destinations in the time it takes to transfer to a single 
destination.  Network latency, disk latency, and 
bandwidth make this goal difficult to fully achieve.  
 
Distributing the data to many endpoints is not difficult 
and has been a feature of globus-url-copy (a popular 
GridFTP client) [17] for some time. It would be simple, 
but slow, to have the client loop over the destination set, 
sending to each in series. Of course the transfer time 
would scale linearly with the number of destinations and 
thus be undesirable. 
 
In our architecture, destination servers are configured so 
that they can forward packets along to other endpoints. 
Thus the GridFTP servers act both as servers receiving 
data and as clients sending data. The servers are set up as 
a tree such that the first destination writes the data to 

disk (if it is configured to do so) and then forwards it on 
to N more hosts (by default N is 2). This process is 
repeated until all destinations have received the dataset.  
 
One can think of the architecture as a directed graph. 
Each destination is a vertex with N edges connecting it 
to N other vertices. A spanning tree is formed connecting 
all vertices. The degree of any one vertex is a client side 
configuration option. Figure 1 illustrates this for the 
default value of N, which is 2. The data blocks are sent 
first from the client to a root destination. The root 
destination then forwards it to two more servers and so 
on, forming a spanning tree.  The forwarding of this data 
is done at the packet level.  It does not wait for a 
complete file to arrive at any given node. Thus we can 
overlap much of the latency involved in each transfer. 
 

 
 

Figure 1: Architecture of GridFTP multilink. 
 

A. Globus XIO 
GridFTP uses the Globus Extensible Input Output (XIO) 
[8] interface for network and disk I/O operations. The 
Globus XIO framework presents a single, standard 
open/close read/write interface to many different 
protocol implementations. The protocol 
implementations, called drivers, are responsible for 
manipulating and transporting the user’s data. Drivers 
are grouped into a stack. When an I/O operation is 
requested, the Globus XIO framework passes the 
operation request down the driver stack. An XIO driver 
can be thought of as a modular protocol interpreter that 
can be plugged into an I/O stack without concern about 



the application using it. This modular abstraction is what 
allowed us to achieve our success here without 
disturbing the application’s tested code base and without 
forcing endpoints to run new and unfamiliar code. 
 
Figure 1 shows five boxes with different names. The 
“Client” box represents client logic; the “Server” box 
represents the GridFTP server logic. The “Data,” “MC,” 
and “File” boxes represent Globus XIO drivers. The 
“Data” driver handles the network interactions for the 
GridFTP server, and the “File” driver handles the file 
system interactions. “MC” is the new XIO driver created 
to provide multilink capability. The multilink 
functionality is achieved by allowing the GridFTP client 
to add the new XIO driver, the multilink (MC) driver, to 
the GridFTP server’s disk I/O stack. Because of the 
modular driver abstraction that Globus XIO provides, as 
the GridFTP server writes data blocks to its file system, 
the data blocks are first passed through the multilink 
driver. As the multilink driver passes the data block on 
to be written to disk, it also forwards the block on to 
other GridFTP servers in the tree simultaneously. This 
approach is minimally invasive to the tested and robust 
GridFTP server.  
 

B. Network Overlay 
 

 
 

Figure 2: Standard GridFTP transfer. 
 

 
 

Figure 3: Transfer using a GridFTP overlay network. 
 
In addition to allowing for dataset broadcasts, the 

multilink driver and this architecture allow us to create a 
network overlay where many GridFTP servers act as 
routers, forwarding packets along to each other until they 
get to the final destination where there are written to 
disk. The advantage of this type of system has been 
actively researched by Pheobus [18]. The multilink 
driver can be configured to only forward data along to 
the next server, and to not write it to disk. Further, it can 
be told to only forward to a single endpoint. With this 
configuration, shown in Figures 2 and 3, we achieve the 
network overlay described above.  
 
Figure 2 shows the standard case where data is sent from 
a client to a server through the Internet. The Internet 
does the routing and the client does not have any control 
over it. Figure 3 shows how the multilink driver can be 
used to route data through the network via GridFTP 
servers. This feature allows the user to have greater 
control over the network path the data takes and thus 
achieve the advantages provided by network overlay 
research. 
 

C. Internal Routing 
Internal, nonroutable IP addresses are a common way to 
configure the worker nodes of a cluster. NAT [19] is 
used to provide the worker nodes with nonroutable IP 
addresses. Thus they cannot be contacted directly from 
the Internet. Access to these worker nodes is achieved by 
first contacting an externally visible head node that has a 
routable external IP address as well as a nonroutable 
internal IP address. 
 
Because the internal worker nodes cannot be contacted 
directly, this common setup makes sending data directly 
to data node difficult.  Common workarounds for this 
problem involve awkward port forwarding or manually 
transferring the data to the head node and then again 
manually transferring it to the worker nodes.  This 
process is not only cumbersome but also inefficient. 
 
The GridFTP multilink functionality allows a client to 
form a network overlay route such that the first hop 
contacts the head node, which then contacts the internal 
worker node.  This process results in a direct transfer to 
the worker node without using disk space on the head 
node and without additional user or system administrator 
intervention. 
 

IV. EXPERIMENTAL RESULTS 
To show the effectiveness of this architecture, we ran 



experiments on the TeraGrid [20]. We used 30 nodes at 
TeraGrid’s University of Chicago/Argonne National 
Laboratory site. The hosts are dual 1.3 GHz Intel 
Itanium processors with 4 GB of memory. We 
designated 29 hosts as destinations, and we ran 
multilink-enabled GridFTP servers on them. One node 
was designated as the client node, and from it all 
transfers were started. All transfers were performed with 
globus-url-copy (a command-line GridFTP client), and 
the TCP buffer size was set to 128 KB. We provided as 
input to globus-url-copy 29 pairs of source and 
destination URLs to measure the performance in the 
absence of multilink functionality. In this case the source 
file was sent to each endpoint serially. We then 
transferred the source file to all destinations using the 
multilink broadcast architecture. 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
Figure 4: Comparison of the total transfer time for one-
to-many GridFTP transfers with and without multilink 

capability. 
 
 

 
 

Figure 5: Comparison of the throughput for one-to-many 
GridFTP transfers with and without multilink capability. 
 
Figure 4 shows the completion time of a broadcast 

session against the number of destinations. The “serial” 
line corresponds to the transfers performed in a serial 
fashion from the client. All other lines represent the 
multilink sessions performed with this architecture. Each 
line represents a different vertex degree in the spanning 
tree (i.e., each server forwarding to a different number of 
destinations). Here “cc1,” or concurrency1, corresponds 
to each server forwarding to one other server, “cc2” 
corresponds to each server forwarding to two other 
servers, and “cc4” corresponds to each server forwarding 
to four other servers. As expected, the total transfer time 
for the serial transfer scales linearly with increasing 
number of destinations, whereas the total transfer time 
for multlink sessions very slowly increases with more 
destinations. 
 
 

 
 

Figure 6: Effective throughput for various cases. 
 

Figure 5 shows the throughput achieved for a multilink 
session by using serial transfers and different vertex 
degrees in the multilink architecture. The throughput is 
measured by dividing the size of the file being sent (1 
GB) by the time it takes for the file to reach all the 
destinations. We note that the throughput achieved with 
multilink architecture is significantly better. Interesting, 
the throughput achieved with “cc2” is better than “cc1” 
and “cc4.” We believe that the resources at the 
intermediate servers (for example, the network interface 
card) are not effectively utilized with “cc1” and the 
resources are used to a maximum extent with “cc2.” 
Thus, “cc4” does not bring any further improvements. In 
fact it hurts the performance because of increased 
contention for resources. An alternative explanation is 
that the latency is additive in terms of the tree.  Assume, 
for example, that the end-to-end latency for “cc1” is n.  
The end-to-end latency for “cc2” should be log(n), plus 



the additional processing latency added at each 
intermediate node to forward the data to an additional 
node. For “cc2” the latency added by additional 
processing is less than the latency saved by shortening 
the tree. When we go to “cc4,” the additional processing 
adds more latency than what is saved by shortening the 
tree. 
 
Figure 6 shows the effective throughput achieved for 
various cases. Effective throughput is defined as 
(number of destinations * file size) / time. As the number 
of destinations increases, the closer the effective 
throughput is to the throughput achieved for a single 
destination transfer, the better it is. The overhead 
introduced by the intermediate nodes in the multilink 
architecture can be measured by how far off the effective 
throughput is from the throughput of a single destination 
transfer. 

 

V. PROTOCOL DETAILS 
The additions to the GridFTP protocol are minor. Every 
server in the tree (except for leaf nodes) becomes a client 
to another server, but that client speaks the standard 
GridFTP protocol. The only change needed is a 
command to add the multilink driver to the file system 
stack: 
 
SITE SETDISKSTACK 1*{<driver name>[:<driver 
options>]} 
 
The second parameter to the site command is a comma-
separated list of driver names optionally followed by a 
“:” and a set of driver-specific URL encoded options. 
From left to right, the driver names form the I/O stack 
from bottom to top. Adding the multilink driver to this 
list will enable the multilink functionality. For security 
reasons the GridFTP server does not allow clients to load 
arbitrary XIO drivers into the server. The GridFTP 
server admin must white list the drivers individually.  

 

A. Usage 
The multilink functionality can be used with globus-url-
copy by using the command-line option “-mc 
<filename>.” The file must contain a line-separated list 
of destination URLs., for example: 
    gsiftp://host1:5000/home/user/tst1 
    gsiftp://host2:5000/home/user/tst2 
    gsiftp://host3:5000/home/user/tst3 
 
The source URL is specified on the command line as 

always. An example globus-url-copy command is 
 
    % globus-url-copy -mc multilink.file 
gsiftp://localhost/home/user/src_file 
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